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UDC 531/534
ON THE DYNAMIC PROPERTIES OF GRAVITATIONAL FIELDS™

L.I. SEDOV

A theory which makes it possible to classify the points of Riemannian space is used,
together with the corresponding associated reference systems for the gravitational
field in the classical general theory of relativity, to obtain the expression for
the field energy density in the form of a four-dimensional scalar (not a pseudoscalar)
and energy-impulse field tensor as an energy-impulse tensor of second rank (not a
pseudotensor). The results refer to all types of the empty Riemannian space as
classified by A.Z. Petrov, Penrose and Newman.

1. The problem of determining the energy, impulse and internal stresses in the gravitat-
ional field has been apparent in its physical theory ever since the birth of the ideas of the
general theory of relativity. Many authors have proposed, in direct contradiction to the basic
principles of covariance of the laws of physics, and in particular to the representations of
the energy as four-dimensional scalar characteristics of the individualized objects, various
variants of the expressions for the pseudotensor of energy-impulse, basic expressions on a
number of physically unsatisfactory solutions of the problems concerning the dynamic character-
istics of the gravitational fields (all formulas proposed for the energy-impulse pseudotensors
imply that the empty Minkowski space has, in the corresponding coordinates, variable energy,
impulse and internal stresses). In this connection we must, before anything else, stress
clearly that in introducing the concept of energy of the gravitational field, as well as in
all remaining cases of investigating the continua, we must define an individual three-dimen-
sional volume, i.e. a local field element and the corresponding characteristic time, and base
our discussions, as in every other cases using the models and definitions of the energy, es-
sentially on the variational equation for the first law of thermodynamics.

Introduction of the concept of individual points and of the corresponding coordinate
systems for the individualised points reduces, in the Riemannian space, to introducing a time-~
like vector field of the unit vector u determined by the Riemannian space itself and admitting
the possibility of treating it as a field of four-dimensional velocities

drfds = u
(ds? = giydzdr); dr = dzid; = uds; i,j=1,2,3,4)

The envelope lines of the vector field u represent the world lines of the points individualis-
ed by the integration constants &% a=1,2,3. The latter represent the Lagrange coordinates
which appear, alternately, in the course of determining the laws of motion =zi= zi (}, &, &, &), &,
All dynamic properties of the Riemannian space and consequently of the gravitational field,
can be considered as mechanical properties of the fluxes of points individualised by the
Lagrange coordinates /l/. Below we shall restrict ourselves to considering the energy density
and energy-impulse tensor density of the gravitational field in vacuum, i.e. in the four-dimen-
sional volume of Riemannian space free of material mass, electromagnetic field and other fields,
In an earlier paper /2/ the problem in question was completely solved for a general type
Riemannian space, i.e. for the case when the space belong to the first type T, as defined by
Petrov /3,4/. The present work extends the results obtained earlier for the case of algebraic~
ally degenerate Riemannian spaces found within finite volumes. The theory demands that addit-
ional analysis be carried out, dictated in general by the presence or absence of a unique re-
ference system associated with the Riemannian space which can be constructed in unique manner
for the degenerate types of the Riemannian spaces. The results which follow can be related
not only to the classical general theory of relativity, but also to numerous other generalized
theories in which the physical space is modelled by a pseudo-Riemannian space.
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When we determine thevacuum in the Riemannian space, we mean by that the Ricci tensor com-
penents are equal to zero in vacuum: &;;=0. This implies that the Riemannian tensor with
components Rim coincides in vacuum with the Weyl tensor with components Wipt according to
the well known relation

Ry = Wi ++ My (gxRypt + gnBix — gnBu — suBp) — Yo (gixgp — gugw) B

Since a number of conclusicns that follow are based on the properties of the Weyl tensor only,
it follows that they can be used in examples also in the general cases when Rij#0 and the
Weyl tensor is not equal to the Riemannian tensor. It must be remembered here that the Weyl
tensor represents one of the main geometrical characteristics of the Riemannian space alsc in
the general case.

The geometrical and dynamic arguments that follow depend on utilizing the algebraic
properties at the points and the analytic properties in the small neighborhood of the points
belonging to the Riemannian space of the set of the Weyl tensor components.

Let usg recall, before anything else, the definitionsand results given by Petrov /3,4/,
Debever /5/, Sachs /6/, Newman and Penrose /7/ in their papers. We introduce at every point
of the four-dimensional pseudo-Reimannian space a symmetric dynamic matrix K of sixth rank
formed by the Weyl tensor components different, on the whole, from zero. The matrix K is form-
ed from the tensor components Wit , with the row and column indices shown below

where M and N are two symmetric matrices of
third rank.

14, 24, 34, 23, 31, 12| ® As we know, the matrix K can be reduced
locally at every point of the Riemannian space,
with help of real coordinate transformation, to
the canonical form in the corresponding tetrad

_ﬂM Nﬂ 9; formed by the system of four oxrthonormed

T IN—M unit basis vectors 9, 3,, 9, 9,

mEBRRRER

(B1°9 == M=04-Fy=—1; 3-J=+1and3;-9;=0 for i =})

of which the vector 3, can be regarded as time-like and assumed to be pointed in the direction
of increasing characteristic time for the element de == J,ds. Thus, according to Petrov the
vector field wu =3, is uniquely defined in the type 7, space. In the general case we use
the local, linear nonholonomic coordinate transformations to obtain globally the result that
the canonical forms of the matrices M and N have the following fomm for the type T,:

a; 0 0 B: 0 0
M={0 a, 0 , N=]0 B, 0
00 —oaty—~ay 00 —By—Hps

Here ay, @, and B,, B, are invariants of the Weyl tensor and we either have gq,s a, and
BrosBa s o &y 7= — auf2, By 55 Buf2, o 5= — af2, By = By/2. Therefore the diagonal terms in the mat-
rices M and N differ from each other, the fact related to the absence of multiple roots in the
corresponding secular equation. The uniqueness of the canonical matrix K and the correspond-
ing basis vectors 3, =u and their envelopes implies, in general, the uniqueness of the as-
sociated reference system. Degenerate types result from the multiple roots, for which the
canonical forms of the matrices M and N retain, in the case of N, D and O a special form
uniquely defined for each type, while the corresponding Petrov tetrads and the vector u =3,
are not determined uniquely.

Every system of tetrads defined by means of the vector fields u = 3, as canonical for
the matrices of the Weyl tensor components in the given Riemannian space, has a corresponding
family of world lines which can be regarded as the families of lines associated with the
Riemannian space which has the corresponding, uniquely introduced canonical matrix of the Weyl
tensor components. According to Petrov, the canonical tetrads in the types T, T, and T, are
determined uniquely at every point M of the Riemannian space, therefore in these cases the
associated reference system obtained is unigue and fully defined by the Weyl tensor. In the
types N, D and O we find that for the fixed canonical forms of the matrix K the correspond-
ing orthonormed tetrads J; and the corresponding vectors 3, = u are not, according to Petrov,
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defined uniquely. In the type O the tetrads are arbitrary. In the case of the types N and D
we obtain, for the possible vectors y, at every point M of the Riemannian space, families
which depend, respectively, on two or on a single scalar parameter. A complete three-dimen-
sional cone of directions can be constructed at every point in question of the Riemannian
space M . Out of these directions we can, in general, extract six directions deteﬁmined by
the isotropic vectors in terms of the basis vectors taken in the Petrov tetrads Qui= 9, =+
b (.4 =1, 2, 3), and hence construct the corresponding six families of the isotropic world lines
which can also be regarded as lines directed towards the future and "accompanying”, in the
universe, the given Reimannian space. These lines can however turn into each other when the
basis is transformed.

Apart from the isotropic lines accompaning with the space, we can introduce, by defini-
tion, the principal isotropic directions at every point of the space, tangent to the isotropic
vectors the components of which satisfy the equations(*)

Qi W ipam@n)QQ' =0 (1.1)

in which the vectors O=MLS&E@Mgme®MRmmofmmmw h&wh=0amdau-
mined with the accuracy of up to the constant multiplier. In general, we have four different
directions in the nondegenerate cases of type T;, therefore we obtain four isotropic associat-
ed lines in the formof envelopes of the principal isotropic vectors Q. These lines can also
pass into each other during the corresponding cocrdinate transformations. The directions QF;
are on the whole, different from those of the principal isotropic vectors(Q.

If some of the solutions of (1.1) merge, then the Riemannian space becomes algebraically
degenerate. If only two solutions merge into one, then the R space will be of type T, by de-
finition. If three solutions for Q in (1.1) merge at every point, and therefore three prin-
cipal isotropic directions merge, then we have a type T4 space. Merger of all four solutions
yields a type N space. If the principal directions merge in pairs, separately but at the same
time, we have a type D space, and finally, a type O Riemannian space obtain when all compon-
ents of the Weyl tensor are zero. In all the types described above the canonical forms of
the matrices K are known /4/. When the canonical form of the matrix K is kept invariant, then
the transformations taking the system of orthonormed bases 3J; into the system of orthonormed

bases 3J;, can only represent a Lorentz transformation of the form
3; = LFI, (1.2)

Direct substitution can be used to show that in the types T,, T, and T3 the above trans-
formation can only be an identity. Conseguently the tetrads 3; and the vector field u =3,
are determined in these types uniquely and the associated reference system, i.e. the systemof
the world lines enveloping the vectors u describe, together with the Weyl tensor invariants,

a Riemannian space and all its properties at R;; = 0, including the dynamic properties of the
R spaces for the case of vacuum.

The Weyl tensor has only four independent algebraic invariants. We can take as these
invariants, four functions appearing in the canonical matrices, in terms of which all the Weyl
tensor components written in canonical matrices are expressed. From the known types of the
matrices K for the Weyl tensor it follows that in the types T, N, and O the invariant com~
ponents of the Weyl tensor are either known constants, which can be assumed in accordance with
the canonical forms of the matrices M and N equal to unity, or they are zero. For this reason
we can treat any functions of the Weyl tensor invariants in the present cases as constants,
although the values of these constants may depend on the type and form of the functions of
the invariants used.

In the types N,D, and O the tetrads 3, are, according to Petrov, noninvariant under the
condition of invariant determination of the corresponding canonical type of the matrices K,
and hence of M and N. BAs we know, in these cases groups of transformations of the orthonormed
bases 3;, Lo, Ly and Lp exist, which leave invariant the matrices M and N defined according to
Petrov. In particular, for the type O such a group of transformations coincides with the com-
plete group of Lorentz transformations corresponding to the passage between two arbitrary,
fixed time-like directions of the vector w =3,. (In this case we find that when Ri;j=0
the space becomes a Minkowski space). Therefore Ly has three real parameters, Ly has two and
Lp has one, the parameters changing the associated reference systems.

In the cases listed above the vector field u =3, in the corresponding tetrads is not
determined uniquely, consequently the associated reference systems cannot be determined uniqu-~
ely by the canonical form of the matrix Konly. We shall however show that in these cases we

*) A natural route for introducing the principal isotropic directions and equations (1.1) can
be found in papers /5-11/.
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find that the problem belongs to the inertial reference systems just as in the special theory
of relativity where the part played by the reference systems geometrically associated with
the Minkowski space, in determined nonuniquely. In the case O the family of the associated
world lines represents a system of parallel, straight time-like lines.

The nonuniqueness encountered in the types O, N and D is essentially connected with the
presence in these spaces of the sets of equivalent global reference systems representing the
straightforward analogs of the inertial reference systems in the special theory of relativity.
We have the following relationship for the canonical matrices in the case when the principal
isotropic directions Q merge, and the vectors 3, J,, 9, in any tetrad corresponding to the
canonical matrix K, are designated in prescribed manner:

Q1=QT+=34+31 (1.3

For this reason the formulas 3;(1,0,0,0),3, (0,0.0,1) and Q,(1, 0, 0, 1) for the components 3,,3,
and Q, taken in the Petrov tetrads, hold for any tetrad 3; obtained from any canonical tetrad
by means of an admissible Lorentz transformation. In the case D where we have two merged
principal isotropic directions Q, and Q, which single out a plane invariant element «, cor-
responding to the basis vectors 3, 9; in the canonical tetrads, we can assume that in addi-
tion to (1.3) for Q, the following relation holds for Q,

Q=Q=9,—3 (1.4)

The formulas (1.3) and (1.4) follows from the properties of solutions of (1.1l) written for
the canonical matrices in the degenerate types D /4/.

Let us consider the problem of constructing the associate reference systems for the de-
generate types 0, N and D of the pseudo-Riemannian spaces in which the unit vector 3, cor-
responding to the Petrov canonical orthonormed tetrads is not defined uniquely. In this
connection we recall the actual canonical forms of the matrices K and the corresponding can-
onical tetrads in the types O, N and D. In the type O we have W;;; =0 in all coordinate
systems, and therefore, generally speaking, in all tetrads. This also implies that all in-
variants of the Weyl tensor can be assumed, in the type O, to be equal to zero. As we know,
in vacuum where the relation R;; =0 also holds, the corresponding pseudo-Riemannian space
degenerates to a Minkowski space.

Using the arbitrariness of the canonical tetrads in the Minkowski space, we can consider,
in this space, any reference systems depending on the choice of the vector fields u. The
determination of the latter requires, generally speaking, the introduction of functions ex-
pressing their laws of distribution, depending essentially not only on the geometrical nature
of the Minkowski space. Clearly, vector fields u of such nature, connected not only with the
spacial characteristics, can be investigated in any type of the Riemannian space and with
various corresponding Weyl tensors /12— 14/. However, the theory developed here considers the
vector fields for u, which can be determined at every point of the space algebraically, only
in terms of the metric tensor components g;; and Weyl tensor components W iihi-

In type O we have W;;, =0 at all points of the space. We can therefore assume that
every reference system associated with the Minkowski space is fully determined by separating
a single arbitrary initial tetrad, since there are no reasons connected with the character of
the Minkowski space to suggest that the tetrads at the neighboring points should vary in re-
lation to the initial tetrad chosen. This implies that after the initial tetrad has been
chosen, all tetrads at the neighboring points and, generally speaking,at all other points of
the Minkowski space, should be the same. In this case the field of tangential unit vectors

a can be constructed in the local, as well as the global manner, starting from any single
given tetrad at an arbitrarily chosen point, by consecutive displacement of the vector u into
all adjacent, infinitesimally near points. In this manner we find that the reference numbers
associated with the Minkowski space represent arbitrary families of the time-like parallel
straight lines. It is clear that such reference systems represent, in the special theory of
relativity, the inertial reference systems which can be regarded as the principal character-
istic geometrical singularities of the Minkowski space. It is also clear that the algorithm
for separating the characteristic associated reference systems in type O out of the nonuniqu-
ely defined vector fields u taken from the Petrov tetrad, is obtained thanks to the absence
of any influence from any additional geometrical parameters.

In type N the canonical type matrices M and N in K have the following form /4/ for the
nonuniquely defined canonical Petrov tetrads at any point of the space:

00 O 010
M=|01 0}, N=|100
00 —1 000]
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From this we see that in any concrete solutions of type ) all scalar invariants of the Weyl
tensor represents the same scalar constant over all points of the space.

Let 3; denote certain, arbitrarily chosen orthonormed vectors for the Petrov tetrad, de-
fined at every point of the space N. Then we know /6— 11/ that at any point of the space
the canonical form of the matrix K remains invariant for all solutions of type §nN, in the
tetrad 5;, defined by the transformation

Bu==34 -+ -5 (a® + 1%) (35 + By) + ady + b3, (1.5)

3y =3 — (% + 1) (s + 31) — 4D, — b3y
3, =239, + a {84+ 3y), Dy=D4 -+ b(I+ )

In the above transformation 4 and b denote any real functions of the points of the space.
The transformations (1l.5) represent the Lorentz transformations at any fixed point of the
space, for any two parameters g and b .

It can be confirmed that the following invariant relations hold under the transformations
{1.5) for the isotropic vector @ at every cancnical tetrad, at every point of the space:

Q=u+3h=H+3 (1.6)

The components of the vector Q (1,0,0,1) in the nonuniquely determined Petrov tetrads are de-
fined uniquely by the canonical matrix K. The isotropic vector ( represents, in the type N,
four principal isotropic directions merged together. The components of the isotropic vector
Q can be obtained in any concrete solution of type N, at every point of the space and in
any coordinate system, by means of algebraic operations. To cbtain all admissible vector
fields u we define, at every point of the space, in addition to the partly defined field of
canonical tetrads J;, another two arbitrary scalar functions a and b of the points of the
space, entering the transformation formulas (1.5).

In connection with solving the problem of determination of the reference systems associat-
ed with the type N space, we note that every concrete type N space has, as compared with
type O space, additional geometrically essential field of the known principal isotropic vectors

Q . Apart from this vector, there are no other significant parameters at different points
of the space, and in particular in the canonical matrix K which remains the same at all points
and in any type N space.

At every point of the space N the system of canonical tetrads and the set of the cor-
responding basis vectors are characterized by a completely unique principal isotropic vector

Q. Also, at every point of the space N we find, for the group of transformations (1.5} of
canonical tetrads representing a subgroup of the Lorentz transformations, that the geometrical
locus of the ends of the vector u forms a two-dimensional surface =,

From the first forxmula of (1.5) we find that the eguation of the surface & representing
the geometrical locus of the ends of the vectors y’ (u?, u?, ud, u%), has the form

2t =1+ [ + (@), 2 ==Y, (2% + (%))

in any canonical tetrad with local Cartesian coordinates a2, 2% z% 2. Clearly, the points on
the surface e belong to the three-dimensional hyperplane z¢ = { w. z!, In every canonical tet-
rad the plane perpendicular to the vectors 3, and 3, contains the vector @ = 3, 3,

Let us consider any two points P and P’, but infinitely close to each other, andlet Q(P)
and Q'(P’) denote the corresponding to them merged principal isotropic vectors, with 3; and
9, denoting any two corresponding systems of canonical tetrads, For the infinitely close
points P and P’ we can transform all tetrads and the vector Q" parallel to themselves, from
the point P'to the point P and describe all vectors using a single fixed Cartesian coordinate
system of the tetrad 3; at the point P. If Q(P)=Q'(P') for any P, then it is clear that
any two-dimensional sets &€ and & are identical and will coincide exactly after being trans-
lated to the point P in the system of bases 3;. In this case all vectors 3, =u depending
on the parameters a and b in the transformation (1.5) and defining e, can be assumed, as in
type (@, to be the same at every point of the space. However, a constraint will now apply,
namely the requirement that the ends of these vectors must belong to the two-dimensional set

&. Thus the vectors u defined at every point of the space in terms of two parameters a =

const, b == const will, as in type O, define the associated reference systems for which the fol-
lowing obvious relation will hold:

Vgui =O (1.7)



152

If Q(P)%= Q' (P'), then transporting the canonical tetrads from the point P’ to point 2 we
cbtain different tetrad families. As we know, transforming one orthonormed tetrad into
another orthonormed tetrad can always be carried out with help of the Lorentz transformation.
However, the transformation of one canonical tetrad at the point P’ ints another canonical
tetrad at the point P does not, in general, represent a Lorentz transformation of the type
(1.5), since under the transformation (1.5) we always have Q = Q' which contradicts the in-~
itial assumption that Q(P)s=Q (P’). Therefore, although the two-dimensional surfaces £ and
¢’ are the same, they have different orientations. The surfaces & at the point P and P’ trans-
ported from P’into P may have common points at which the vectors u are the same, but in this
case the vectors 3,3, 9; and 3,3y, 9, are different in accordance, in particular, with
equality (1.6) when Q= Q'. In the general case the sets & and &’ coincide for the points P
and P’ belonging to one and the same envelope of the merged principal isotropic vectors Q
which, as we know /9/, are for type N the geodesic vectors in the Riemannian space when
Rij == 0.

Next we consider the problem of constructing the associated reference system based only
on the geometrical characteristics of the space itself, expressed as the envelopes of the
vectors u for Qs£Q’. We recall that the components of the vector u in the corresponding
canonical tetrad are 0,0,0, 41 and can be determined in any coordinate system using the known
nonholonomic coordinate transformation to the given canonical tetrad. Keeping the vector {
fixed we can introduce, in a unique manner, at every point of the type N space using the set
of canonical tetrads defined by the transformations (1,5), a two-dimensional surface & orient-
ated in the same manner with respect to all canonical tetrads at every point of the space.

The orientation of the vector Q governs only the orientation of the equivalent tetrads from
the point of the transformations (1.5) and the orientation of the surface & at the points of
the space.

Every individual point of the corresponding surface & has, amongst the collection of
equivalent tetrads, a corresponding, uniquely defined tetrad and the corresponding vectors u
and 3, satisfying the relation (1.6). It is clear that the individualization, wor in other
words, separation of a point of the surface ¢ is equivalent to the process of separating a
canonical tetrad and the vectors u’ and 3, and can be reduced to that of fixing the parameters
¢ and b taken from the particular local transformation of the type (1.6). If we place all
points of the space with the known vectors  in 1l:1 correspondencewith the points of the surface
¢ or with the values of the parameters a and b obtained from the local partial transforma-
tion (1.3), we obtain the vector fields Q, u’ and 3, connected by the relation (1,6). This
kind of individualization depends on the initial tetrad entering the formulas (1.5). It is
however remarkable that the intrinsic properties of the surface &¢ do not dependon the choice
of w in the initial tetrad. The orientation of the surface e is different at different points
of the space, and is completely defined, mainly by the isotropic vector Q.

We can use as the parameters fixing the individual points on differently orientated -sur-
faces g at various points of the space, other parameters connected functionally in 1l:1 cor-
respondence with a and 8. It is essential that the general equation of the surface & is the
same at every point of the space, in any canonical tetrad, and a fixed point on the surface
¢ has the corresponding, well defined vectors Q’ and u' and a canonical tetrad. It should how-
ever be remembered that when Q= Q', the systems of tetrads are different at different points
P and P’ of the space, and so are the surfaces ¢, &. The unit vectors u andu’ have differ-
ent orientations. Ws have shown above that the points of the surface & can always be individ-
walized in the initial tetrad at the given point using the values of the parameters 4 and b
appearing in the transformation (1.5). When Q#;Q’ , the same individual points on & and
¢ will have, at different points of the space, the corresponding different tetrads and dif-
ferent vectors w’.

To construct different associated reference systems in the type N spaces, it is natural
and sufficient to assume that all points of the space have a single corxresponding peint on
the surface g, with different orientation at different points of the space. The canonical
tetrads and vectors u' with fixed values of the parameters ¢ and b corresponding to the individ-
ualized point on the surface e, for world lines and canonical tetrads at all points of the
space. The Lorentz transformation for the tetrads lying infinitely near each othexr is deter-
mined by the matrices vindx' where Yijy = —yss are the Ricci symbols and da' are the infinit=-
esimal displacement vector components

P'P = dr (dz*, dz?, da®, dz¥)
In accordance with this we obtain a definite reference system in the whole space. Further,
if we accept the natural assumption that all points of the surface & are equivalent, then
every pair of parameters ¢ and p, or in other words every individual point &, will have its
associated reference system. Thus we find that in type N a continuous collection of the
associated reference systems can be used, every system determined by the values of the individ~
ual parameters of the points e, and in particular by the values of the parameters a and b,



153

For a given, specified type N space we find, that according to (1.6) every scalar term in the
eguation

V! + divd; = V.0 (1.8)

has a single identical value for all associated reference systems. In particular, there exists
an invariant V,u’, which can depend on the points of the space and represents a characteristics
of the type N space in question. The characteristics, as a function of the points of the
space, can be different in the different, particular, type N spaces. It is clear that if in
some region the directions of the vectors u and u’ are the same at all points P and 2P’ lying
close to each other, but the canonical tetrads can be different, then the following relations
hold:
V,lui =0, diV431 =ViQi

In different type N spaces the relation connecting the scalars V,;} and div,3, depends on
the distribution of the isotropic vectors Q.

The method of constructing the associated reference systems in the Riemannian space re-
presents, in type N, a straightforward natural generalization of the method used earlier to
introduce the associated reference systems in the other types. Indeed, e.g. in type T; the
canonical tetrad and vector u are determined uniquely, therefore the associated reference
system is also unique. In type N the vector u is not determined uniquely by the form of the
canonical matrix K, but its unigueness is attained by fixing the point on the surface & or,
which amounts to the same thing, fixing directly the vector u’ obtained from the group of trans-
formations (1.5). Now, in the case of N we can construct in this manner many associated
systems, remembering to use different points of the surface €. The requirement that the fixed
points lie on the surface ¢, or in other words, that the ends of the vectors u’ lie on the
surface €, presents a certain restriction absent from the type O.

We can express the invariant V,u* in type N, just as in type 7T,, in terms of the
characteristics of the associated reference system. Indeed, denoting by 9, and 3; the ortho-
normed bases for the associated reference system in question at the points P’ and P lying in-
finitely close to each other for the canonical tetrads, we find that the corresponding Lorentz
transformation has the form

3 '= (8 + YJ'-uyl) 9,
where y' denote the Cartesian coordinates of the point P’ in the tetrad for P, and vy,; are
the Ricci symbols.
We can write for the vector u’ in the tetrad for the point P /2/
w =09y = (8 + v\.y))d;
and this yields

V' = v (1.9)

From this it follows that the quantity vi.u is a scalar with a single and the same value at
every fixed point, and in all asociated reference systems introduced above.

Let us now turn to type D. According to Petrov, in type D the canonical form of the
matrices M and N in the matrix K, for the nonuniquely determined canonical tetrads, is as
follows:

a0 O po o
M=|0a 0 |, N={08 0 (1.10)
00 —2a 00—28
The invariants o and f in the actual solutions may depend on the points of the space. The

principal, isotropic pairwise merged directions Q; and Q, define the plane n. A plane n can
be introduced at every point of the space, together with the definite unit vectors 9, and 3,
mutually perpendicular and lying in the plane 7, in a nonunique manner. The vectors can
be considered together with the corresponding unit vectors 3, and 3, as an orthonormed systems
of the Petrov basis vectors in which the matrix K mentioned above and the corresponding mat-
rices M and N (1.10) are invariant.

The nonuniqueness of the canonical Petrov tetrads is connected with the presence of a
group of Lorentz traniformations depending on a single parameter v/c, transforming the tetrad
9; into the tetrads J; and retaining the canonical matrix of the Weyl tensor components in-
variant in the type D. As we know /9/, the transformations have the following form under the

corresponding numbering of the orthonormed basis vectors 3; and 3,; (here ¢ denotes speed of
light):
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Every such Lorentz transformation corresponds in a rectilinear translational motion along the
direction of P, with three-dimensional velocity v of the translational motion in the plane
of the system 3;, 3, relative to the system 33, 92 The formulas (1.11) provide the transform-
ation from the canonical orthonormed unit bases 34, 9,, 3, 3, to the canonical orthonormed unit
bases 3 . 52, 5'3, 3}

Let us now introduce the isotropic vectors Q, and Q, directed along the principal, merged
isotropic directions and defined by the formulas

Q;mu—{—l‘)l, Qz=-_u-»31 (1.12}

The vectors , and Q; are situated in the plane =, just as the vectors w and 3,. The plane

=, the directions of the vectors {J; and Q, and a. § in the matrix K are all determined un-
iguely by the components of the metric tensor, and correspondingly by the components of the
Weyl tensor. In case of different canonical tetrads, the vectors Q, and Q. are defined by
virtue of the transformations (1.1l) nonuniquely, since from the formulas (1.11) and (1.12)
follow

Q=T+31 =@+ N)r=2Q (1.13)

Q=i-T= - =70 =}
where the scalar parameter ) is, according to (1.1l), equivalent to the parameter v/¢ and can
assume various values ranging from zero to —+ oo.

The scalar equation (QQ, = Q;Q, = 2 follows from the formulas (1.,12) and is satisfied
identicaily at every_point of the space. When py/¢c =0, and hence when A =1 , we have from
(1.11), 3; = 3, and 3J; =J,. Thus the transformation formulas (1.1ll) are connected with the
initial vectors 3, and 3; where A = 1.

Let us now consider the geometrical locus of the ends of the vectors & = 34 for the
Petrov tetrads at a fixed point of the space. Since this system of tetrads, and hence of the
corresponding vectors @ depends on a single parameter only, it follows that the geometrical
locus which represents in type D a simplified example of the set & {two-dimensional in type

N), represents here a c¢urve situated.in the plane . It is clear that the plang n is dif-
ferent at different points of the space [), but the curve remains the same in every known plane
x,

It is easy to establish that the set g represents, for type [), a hyperbola in plane n
with known asymptotes corresponding to two merged isotropic directions. The hyperbola is situ-
ated so that the vector @ can be represented by any vector pointing towards the future between
the isotropic directions determined by the vectors @, and Q,. At every point of the type D
space the hyperbola, as well as the principal merged isotropic directions and the plane m con-
taining them, can be shown directly, provided that the components of the metric tensor in type
D are known in some arbitrarily chosen coordinate system. Using this coordinate system at
an arbitrarily selected point P, we can define arbitrarily a time-like unit wvector u, lying
in the plane =xn, pointing towards the future and situated between the merged isotropic direc-
tions Q; and Q,. Having conditionally fixed the vector wu, corresponding to the values v/c =
0 or A =1, we can determine the individualization of the points lying on the hyperbola by
the values of A, or by the corresponding values of p/¢ in the Lorentz transformations (1.11)
preserving the canonical form of the matrix K. We use the vector u, specified above and the
corresponding canonical tetrad T to construct analogous tetrads 7' and vectors uf at  every
point P'of the given space [ and thus cbtain the corresponding reference system associatedwith
this space, We can carry out such construction in the small in more detail, as follows. We
postulate the planes s and n’ and the corresponding hyperbola at two infinitely close points
P and P’ . In addition to the unit vector u, in the plane n and canonical tetrxad T with the
basis vectors 2;(9, =u,) . we take at the point P’ of the plane a’ an arbitrary unit vector
u,* and the corresponding canonical tetrad T* with basis vectors &;*(9,* = u,*). We transfer
the tetrad T* and its basis vectors d;* from the point P’ to the infinitely near point P and
denote by Ly the elements of the matrices L of the infinitely small Lorentz transformation,
the elements connecting the vectors % of tetrad T* with the vectors 3; of tetrad T . Wehave

¥ = Lr9, = EPILFD,
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where the matrix II* determines a three-dimensional turn, and the transformation matrix E;*
determines a translational motion of the type (1.11). As we know, the matrix L = | L* | can
be written for the infinitely small Lorentz transformation in the form

L=|6f+yfade'|=EN=|TNFE | = | E°TLY|

in which
1 0 0 Vi dz!
0 1 0 'yf,, dz
E =
0 0 1 (1.14)
Vuds' yladd' yluddt 1
1 Vudet 9%udzt 0
O= ‘Y:.lgl dl‘l 1 ‘Y?’l d:c' 0
Yiwds! yiwddd 1 0}
0 0 0 1
where the vector PP’ = dr = dr'3; = d.z'"i'),,*, Yk.u are Ricci symbols, and Ykit = — Vik-

The matrix Il determines an infinitely small, purely spatial turn which superimposes the
planes . and 7’ and the corresponding hyperbolas, and the matrix E determines the relative
translational motion of the bases 3, 3,=wu, and 3% 3,* =u* along the hyperbola and depends
only on the choice of u, and u*.

Let us denote by | Ej** | = E* the matrix of the infinitely small Lorentz transformation
in the plane =, inverse to the transformation £: E,*"Ei' = 5. If we now write
3 = Ej*iﬁi = E*}{EP1,*3, = 11,9, (1.15)

then, irrespective of the choice of the initial vector u* and the bases 3;* in the plane mn
we can regard the canonical tetrad 3; and the vector 3,” =u’ taken at the point P’ as cor-
responding to the tetrad T and vector u, at the point P. The tetrads T and I’ are connect-
ed by an infinitely small turn under which the planes n and n’ superimpose. The turns depend
only on the vector dr and are independent of the choice of the initial vector wu, and con-
sequently, of the values of the parameters v/c or A individualizing the points on the hyper-
bolas in the planes n and #n’. By virtue of (1.14) and (1.15) we find that the relation ui =
u'* holds for the infinitely close points P and P’ in the corresponding canonical tetrads.
If follows therefore that in a small region near the point P the components u' taken in the
neighboring canonical tetrads are the same to within the terms of higher order of smallness,
and

outfaz* = 0, divuu = V,u* =0 (1.16)

It is clear that the relations (1.16) hold at any point P of the space D and for every assoc-
iated reference system constructed from any point P with any initial unit vector wu, of pre-
scribed type.

In the tetrads differing from each other at the points P and P’ we have, in the small,
according to (1.15), du/ds = 0 where ds 1is an element in the metric form, with the accuracy
of up to and including the first order infinitesimals in dzt . However, the field of unit
vectors u constructed step by step using the proposed method, with help of the canonical tet-
rads and with the nonlinear terms taken into account, in a finite region of the space D, is
not obtained by parallel translation of the initial vector u, selected at the some point P. In
the small we have the same u' in the neighboring tetrads, therefore du'/ds = 0. In the general
case however, we find that at different points of one and the same world line we have, for
certain associated reference system, the acceleration du/dsst£ (0. This can easily be establish-
ed when the components of the metric tensor of the given solution of type D are known. In
this connection, it is evident that the corresponding world lines of the associated systems
on which the accelerations are not zero, are not geodesic.

2. Let also inspect certain general conclusions and various representations of the metrxic
form connected in any manner with the given field of four-dimensional velocities u and the
associated coordinate systems. In the global form the metric form for the nonisotropic vectors
can be written, in the general case, in the form

ds*= gy(N)(dN%)® -+ 2gay(n)dn¥dn® L gapdnodns (2.1)
or

dst= c2d? L 2gldtedt - glydEodts (2.2)
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Here 1% M*and ¢ &%, @ =1,2,3 denote the Lagrangian coordinates connected by a transforma-
tion of the form

=f(n%n), BB =00 (Y, 0%, nY;a, B=1,23 (2.3)

It is evident that the formulas (2.1) and (2.2) correspond to the same family of world lines,
determined by the same given unit vector field u. It is easy to see that when £* and n® are
constant, then the differential d¢t at the global time variable is equal to the increment in
the characteristic time along every world line. The choice of the functions f(n% n') also
determines the start of counting the characteristic time on every world line, and the func-
tions @B (n!, n?, n®) can be arbitrary. In the general case the components g i, ] =1,2,3, 4,
depend on 7', 5% y® and 17* and the components g24,g§h on all t'. The family of the assoc-
iated world coordinate lines £* = const or mN* = const can be obtained, by virtue of the depend-
ence of the coordinates % on ¢, from (2.1) and (2.2), using the formula (2.3).

We shall call the motion of a perfect medium with velocity u stationary, if all compon-
ents of the metric tensor g;; depend, in some coordinate system 7', only on n%L1n% and 7
and hence not on the time coordinate M. The corresponding form of the metric (2.1) and the
corresponding motion may suggest the presence of stationarity, but in the forxm of the metric
given by (2.2) for the same motion the components g& and gﬁb may depend on §&* and .

In the general case it is impossible to make all components gJ| vanish when using the
transformations (2.3) which preserve the reference system. Indeed, the four-dimensional vel-~
ocity u and acceleration vectors a = du/ds represent the invariant geometrical character-
istics of the given associated world lines. On the other hand, in a coordinate system cor-
responding to the form (2.2) of the metric and in a local inertial characteristic_ coordinate.
system with the orthonormed basis vectors §a,§‘, we have at any point M = g, 9% 4.a454
where i, = #fgd = gf,, since

=1, #=0 (2.4)

and by virtue of the inertial character of the tetrad 3, we obtain

di  digma 9826 EY) =q 2.5
_dT=__s-3= cat 9 ( )
Therefore, if the world lines are non-geodesic, then the acceleration as (0 and hence, in
accoxdance with (2.5}, g;;eo is mandatory in the associated reference system, If the com~
ponents g& in (2.2) do not depend on the glabal time ¢, then the world lines are geodesic.
If gi; (n®) depends only on 7% then we have stationarity, but the world lines n® = const are,
generally speaking, not geodesic.

If the world lines are geodesic, then dgli/dt=0 but in this case we can also make the
components gﬁ vanish by means of a transformation of the type (2.3), provided that the
following condition of integrability holds:

%o _ %85 _ (2.6)
9EP o

or, in other words, provided that the corresponding velocity field with components ug is ir-
rotational. Arranging the velocity field u, we can determine and compute at every point of
the space, various mechanical characteristics of the flux of the corresponding perfect medium
corresponding to the velocity field u at every point of the space.

Next we shall give a kinematic interpretation of the invariant Vol In the locally
inertial tetrad introduced above and corresponding to the formula (2.4), we have
ds? = da¥’ — dz’ — da? — dz*, drt=cds (2.7

i_ out dul oyl Ju?
VW =Gxtsmtomt oz

Let us now introudce the three-dimensional velocity v of the points V == v®Jy in the three-
dimensional space using the local characteristic coordinate system introduced at the pointAhe
wddmnmmweMWatM%=0mdw=0.Inmewﬁwm,MHMﬁdydmemmmM
we have, generally speaking, u,s=0 and v, 3 0. We recall the known formulas

. t 42 e ¥ (2.8)
ds cVi—vja ' ds cVi—vgr
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where ¢ is the speed of light. Using (2.8) we obtain from (2.7) at the point M

dVy’ —dVi,

i i 5.
Viu‘ dV; = —c- dIV:gV dV4 = —-—dW

dV,=dVy' — dv, (2.9)

since we can assume that dVyds = dV,= dVsdi where ds=cdf and dt is the characteristic
time increment on the world line passing through M. Here dV,; denotes an infinitesimal ele-
ment of three-dimensional volume orthogonal to the world line at the point M, while dVy is
the same deformed "liquid volume" on the same world line, displaced over the characteristic
time dt. In general, we can use for dV,; a formula of the type

th
'y = gap — “2 "t ap arp (2.10)
where a known determinant appears under the square root sign. A corresponding formula holds
for dVy'.
If the motion with velocities m is steady, then all g;; are independent of %* and
dVy = dv,. Consequently, if the motion of the perfect medium along the world line is stable,
then from (2.9) we obtain

V' =0 (2.11)

However, in this case, just as in the general case, after transforming (2.1) to (2.2) we find
that the components g{é and g,',‘ﬂ will depend not only on £%, but alsoc on B = ¢, and for
this reason we shall have in the stable motions

u™tVrn"tsa0, dujds=az%0
Equation (2.11) holds for the stable motions, but the world lines are, in general, no longer

geodesic. Clearly, the relation V,u'= 0 holds for the stable motion in any Petrov type
spaces, for any associate reference systems at every point of the space.

3. a11 possible type D solutions in vacuum are known for the metric tensor components gi;
and have been published in /15/. The general symmetry properties of the type D space in
vacuum imply that a coordinate system in which the components g£;; depend on two coordinates
only, can always be found. If g;; depend only on 2! and 2%, then every associated coordin-
ate system and the velocity field u corresponding to this reference system, will be stable.
This implies that to determine the stable velocity field u in type D it is sufficient to re-
duce, with help of the symmetry properties, the metric (2.1) to the form in which the compon~-
ents g;; are independent of z%.

Above we constructed a series of the associated reference systems from the type D spaces,
depending on a single parameter., It is clear that the relation V;ui = ( holds for all world
lines in these systems in any coordinates. This implies that in type D solutions such as
the Schwartzchild and Kerry solutions outside the gravitational sphere where the motion is
steady state, we have V,u'=0 in the associated reference system constructed. In the types
T, T,, T; the vector field u and the associated reference systems are determined uniquely /3,
4,16/, while in the types D, N and O they are not, but in all cases the quantity V,u" is
determined unigquely at every point of the space. The formula (2.9) provides a simple geo-
metrical interpretation for the variation in a substantial three-dimensional volume from the
point of view of a flux of individualized points moving with four-dimensional velosity u-.
This is found to be an invariant feature of the Riemannian space, and a geometrically invari-
ant property of the gravitational fields in vacuum in the general theory of relativity. The
unigueness of the determination of Vtu‘ implies the uniqueness of variation in dVy — 4y,
along the associated world iines introduced above.

All previous discussions concerned the intrinsic geometrical properties of the Riemannian
space connected with the Weyl tensor. The associated reference systems introduced are deter-—
mined using a Weyl tensor of fourth rank, possessing the known symmetry properties andknown
types of canonical matrices in various degenerate cases. Thus we have developed above a
purely mathematical geometrical theory for a four-dimensional, pseudo-Riemannian space, and
introduced invariant reference systems determined by the Weyl tensor. The results obtained
above have inherent mathematical interest and do not depend on any assumptions or postulates
of a physical nature. However, the reference systems obtained can be regarded as a general-
ization of the inertial reference systems for the Minkowski space, and their characteristic
features can be used as a basis for the physical assumptions concerning the determination of
the energy and energy-impulse tensor of the gravitational fields considered in the Riemannian
space in the case when the Ricci tensor is zero, i.e. when R;;=0.
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4, In order to arrive at conclusions of physical nature it is expedient to begin with
the basic integral variatiocnal equation representing, for an infinitesival element of space
volume, medium and the corresponding fields, a direct consequence of the variational formula-
tion in the small of the first and second law of thermodynamics /17~ 22/

8§\ Adv,+ 8w L 5w =0 {4.1)
Vi

The Lagrangian A represents a scalar function which can be regarded as the total specific
energy of the system taken with a minus sign, then term §W* is governed by the presence of
irreversible effects and external interactions, and the virtual functional 8W obtained from
(4.1) represents a surface integral taken over the boundary surface I enclosing an arbitrary
region of volume V, in the course of integrating the continuous characteristic functions of
the physical phenomena.

We find that in the problems of determining the energy and energy-impusle tensor of the
gravitational field, insufficient attention is usually given in the general theory of relativ-
ity to the following aspects.

1) to the physical meaning itself of the variational equation (4.1) which is used, as
a rule, in the postulated formulations of particular type:

2) to the analysis of possible expressions for the density of the Lagrangian when the
Euler equations are fixed;

3) to the relation connecting the variational equation with the energy equation for the
infinitesimal individualized objects and to the problems of individualization of the elements
belonging to the system in question generally;

4) to the physical meaning of the energy-impulse tensor as a physical characteristics ap-
pearing in the equation of energy for the individualized infinitesimal volumes;

5) to the meaning of the divergent term in the expression for the Lagrangian not affect-
ing the Euler equation, but affecting the expression for the energy-impusle tensor.

As we know, the Euler equations derived from (4.1l) remain unchanged if an additive term
of the form _.ViQi is included in A, or in other words, if A is replaced by

A=A —VQ (4.2)

where Qiﬁ =1, 2, 3, 4) are certain functions of the coordinates for which the formally and
mathematically constructed expression V,Q' may, in general, not be a scalar. The sufficient
condition for it to be a scalar is, that Q! represent the components of some vector Q = Q9.
If V,Q s 0,then in physical terms it means that additional energy density can be introduced
to the system in question. In the general theory of relativity this can be introduced in the
form of a fraction corresponding to the energy field density and representing a physical
characteristics of the four-dimensional Riemannian space modelling the physical space in nat-
ure. The fundamental physical concept of the energy related to the covariance of the physical
laws, demands that the quantities A and V;Q' must be four-dimensional scalars.

It is improtant that the scalar density of the fraction V;Q" of energy should be re-
presentable by its geometrical properties, and it can be used in various applications of the
general theory of relativity, on the whole independently of A determining the Euler equations
and containing the energy of matter and electromagentic field, and other terms, the applica-
tions governed by the geometry of the Riemannian space and the properties which become zero
in vacuum. Thus e.g. in the classical general theory of relativity the following formula for
A is often used:

R
A = — W — Um

where R denotes the total curvature of the four-dimensional Riemannian space, U, is the speci-
fic energy of matter referred to the four-dimensional volume, and % is the gravitational con-
stant. By virtue of the Euler equation we find that in vacuum, i.e. when U,=0y, R=0 and
A = 0. Since the equation (4.1) represents, at 8W* =0 , a variational formulation of the
first law of thermodynamics in which, as we already said, A is specific local energy, the
equality A =0 when O6W?* = (, contradicts the fundamental physical proposition that the
gravitational fields have, and can transmit energy by gravitational waves. Addition of an
invariantly defined term of the form -V, Qi to A in (4.l1) restores in natural mannex the
physical sense of the first law of thermodynamics as applied to a gravitational field in vac-

uum. Its presence determines the additional energy — V,Q!dV, and governs the appearance of
the extra term OWg, carrying an additional terms in the original egpression for the energy-
impusle tensor given in terms of A and 8W* in the basic equation (4.1). The basic Euler

equations remain in this case completely unchanged.
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The presence of an additional term

{ vaiav,
V.

in the first integral in {4.1) does not affect the Euler equations, since the integral can
be transformed into a surface integral over = and all variations on I can be assumed, when
deriving the Euler equations, to be equal to zero. The vector @ = @3; can in general depend
on a number of additional intrinsic parameters affecting the energy flux through Z. The
corresponding intrinsic parameters can be used in the physical theories in which certain com-
plex properties are assigned to the vacuum. Using the equation (4.1}, we can write

—s {vi@iar L awa=0
Vi

From this we find that, provided that Q' depends on the Lagrangian coordinates t only, S ==
0= 08 + 827V, and the following formula holds:

sWo = P orin, do =5 { v.Q av,

b Vs

In this case the determination of Wy is reduced to detexmination of P;¥, i.e. the com-
ponents of a tensor, provided that V,Q' is a scalar. After carrying cut the variations and
corresponding transformations we obtain, in the present case, in account of &Wg (see /17/),
the following expression for the added part of the energy~impulse tensor component P]-"':

P = v,Q8,/—-v,Q" (4.3)
In the general case it is easy to confirm that
VP! = (V,9; — V,7,)Q" = R'ppQ™ = ~Rp)Q" (4.4)
In vacuum where R,; = 0, we cbtain V,P; =0 and from the equality (4.3) follows
Pt = V02 (0 =1,2,3) (4.5)

Setting € = Ju, where / is a certain function of the Weyl tensor invariants, we obtain in
the reference system associated with the vector u

V;Q5=Vi(fu‘)=—‘;§-+fviui, V4Q‘=%—+ IV.gu‘ (4.6)

Therefore from (4.5) and {4.6) we find that in the reference system associated with the vector
¥ and along the world lines, the following relations hold:

Ppr=V,(Iu) = IV = IVeu®, dub/dt =0 (4.7)

From (4.3) for P,-"' and from the supplementary assumption that in the associated coordinate
system the following relation must hold together with (4.7) for the individualized infinite~-
simal volumes contracting into a point:

i i 1 i
PA=VQ =V, Ii=3L 4 [V (4.8)

Relations (4.7) and (4.8) agree, provided that the following equation holds along every world
line:

difds =0
(4.9)
In this case we obtain
PRV, = IVqu2dV, = I (dVy — dVy) (4.10)
since dut/dt* = (0. Thus from {4.9) it follows that
T(E, & B =T, 0% (4.11)

Clearly, the relation (4.11) will hold in any Lagrangian coordinate system provided that
the metric tensor components are independent of m*. Otherwise, (4.9) implies that we must
take, as the invariant [, a constant scalar in every of the types I, T, and D as well as in
Ty N and O. We have shown above that in the types T3 N and O the invariant I cannot dif=-
fer from a constant. From (4.8) and (4.9) it follows that the specific energy of the gravita-
tional field in vacuum per unit four-dimensional volume, can be obtained from the formula

P = = V.Ju' =IVou (4.12)
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where I is a certain constant not only with respect to the time coordinate, but, generally
speaking, alsoc to the spatial coordinates. From (4.3) and (4.12) follows a formula for the
energy-impulse tensor of the gravitational field in vacuum

P = I (Va8 — V) = IV, (u's)f — 8;u"y

The above results can also be used in the macroscopic theories concerning the energy-
impulse tensor in the presence of matter and electromagnetic field,

As a result of the mathematically and physically correct theory for the Riemannian space
developed above, we introduce the associated reference systems and formulas determined by the
space itself, for the energy~impulse tensor components in all possible examples of the grav-
itational fields in vacuum. The results obtained make it possible to write the conditions at
the strong discontinuities which may appear within the gravitational fields, and can be used
in formulating the boundary conditions.

Apart from the canonical associated systems determined only by the algebraic properties
of the Weyl tensor components in each type, we introduce many other reference systems corres-—
ponding to other vector fields u. However, the determination of every different vector field
u is connected either with use of the higher order derivatives in z' of the metric tensor
components, or with the use of some parameters the nature of which cannot be determined dirxect-
ly and exclusively by the local properties of the Weyl tensor for the Riemannian space., Such
supplementary parameters can result in substantial inequalities V,uu's=( for the associated
reference systems in the space of type D) and Minkowski space, which cannot be regarded, under
any circumstance, and the characteristic feature of those spaces.

In conclusion the author thanks G.A. Alekseev and A.V. Zhukov for help given in assess-
ing the results of the theory of algebraic classification of the Weyl tensor.
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