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ON THE DYNAMIC PROPERTIES OF GRAVITATIONAL FIELDS* 

L.I. SEDOV 

A theory which makes it possible to classify the points of Riemannian space is used, 
together with the corresponding associated reference systems for the gravitational 
field in the classical general theory of relativity, to obtain the expression for 
the field energy density in the form of a four-dimensional scalar (notapseudoscalar) 
and energy-impulse field tensor as an energy-impulse tensor of second rank (not a 
pseudotensor). The results refer to all types of the empty Riemannian space as 
classified by A.Z. Petrov, Penrose and Newman. 

1. The problem of determining the energy , impulse and internal stresses in the gravitat- 
ional field has been apparent in its physical theory ever since the birth of the ideas of the 
general theory of relativity. Many authors have proposed, in direct contradictionto thebasic 
principles of covariance of the laws of physics, and in particular to the representations of 
the energy as four-dimensional scalar characteristics of the individualized objects, various 
variants of the expressions for the pseudotensor of energy-impulse, basic expressions on a 
number of physically unsatisfactory solutions of theproblemsconcerning the dynamic character- 
istics of the gravitational fields (all formulas proposed for the energy-impulse pseudotensors 
imply that the empty Minkowski space has, in the corresponding coordinates, variable energy, 
impulse and internal stresses). In this connection we must, before anything else, stress 
clearly that in introducing the concept of energy of the gravitational field, as well as in 
all remaining cases of investigating the continua, we must define an individual three-dimen- 
sional volume, i.e. a local field element and the corresponding characteristic time, and base 
our discussions, as in every other cases using the models and definitions of the energy, es- 
sentially on the variational equation for the first law of thermodynamics. 

Introduction of the concept of individual points and of the corresponding coordinate 
systems for the individualised points reduces , in the Riemannian space, to introducingatime- 
like vector field of the unit vector u determined by the Riemannian space itself and admitting 
the possibility of treating it as a field of four-dimensional velocities 

drlds = u 
(&z = gij&&~l; dr = d&i = uds; i, j = 1, 2, 3, 4) 

The envelope lines of the vector field u represent the world lines of the points individualis- 
ed bytheintegration constants Ea. cc= 1,2,3. The latter represent the Lagrange coordinates 
which appear, alternately, in the course of determining the laws of motion zi= =i(pT g*,p,P),5". 

All dynamic properties of the Riemannian space and consequently of the gravitational field, 
can be considered as mechanical properties of the fluxes of points individualised by the 
Lagrange coordinates /l/. Below we shall restrict ourselves to considering the energy density 
and energy-impulse tensor density of the gravitational field in vacuum, i.e. in the four-dimen- 
sional volume of Riemannian space free of material mass, electromagnetic field and other fields, 

In an earlier paper /2/ the problem in question was completely solved for a general type 
Riemannian space, i.e. for the case when the space belong to the first type T, as defined by 
Petrov /3,4/. The present work extends the results obtained earlier for the case of algebraic- 
ally degenerate Riemannian spaces found within finite volumes. The theory demands that addit- 
ional analysis be carried out, dictated in general by the presence or absence of a unique re- 
ference system associated with the Riemannian space which can be constructed in unique manner 
fox the degenerate types of the Riemannian spaces. The results which follow can be related 
not only to the classical general theory of relativity, but also to numerous other generalized 
theories in which the physical space is modelled by a pseudo-Riemannian space. 
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When we determine thevacuum in the Riemannian space, we mean by that the Ricci tensor Com- 
ponents are equal to zero in vacuum: Rij= 0. This implies that the Riemannian tensor with 
components Rtel coincides in vacuum with the Weyl tensor with components wijkl according to 
the well known relation 

Since a number of conclusions that follow are based on the properties of the Weyl tensor only, 
it follows that they can be used in examples also in the general cases when St,+0 and the 
Weyl tensor is not equal to the Riemannian tensor. It must be remembered here that the Weyl 
tensor represents one of the main geometrical characteristics of the Riemannian space also in 
the general case. 

The geometrical and dynamic arguments that follow depend on utilizing the algebraic 
properties at the points and the analytic properties in the small neighborhood of the points 
belonging to the Riemannian space of the set of the Weyl tensor components. 

Let us recall, before anything else, the definitionsand results given by Petrov /3,4/, 
Debever /5/, Sachs /6/, Newman and Penrose /7/ in their papers. We introduce at every point 
of the four-dimensional pseudo-Reimannian space a symmetric dynamic matrix Kof sixth rank 
formed by the Weyl tensor components different, on the whole, from zero. The matrix K is form- 
ed from the tensor components W. rlk~ r with the row and column indices shown below 

whereM and N are two symmetric matrices of 
third rank. 

14, 24, 34, 23, 31, 12 kl As we know, the matrix Kcan be reduced 
- - 
14 

locally at every point of the Riemannian space, 
with help of real coordinate transformation, to 

24 the canonical form in the corresponding tetrad 

K=; 
3* formed by the system of four orthonormed 
unit basis vectors 31, 3,,3,, 34 

31 
12 
- - 
ii 

(3I.31==3$.38 =35+35=-f; 3ew3~=+iand31s3j=0 for i +j) 

of which the vector 3a Can be regarded as time-like and assumed to be pointed in the direction 
of increasing characteristic time for the element dt - &is. Thus, according to Petrov the 
vector field u = 3p is uniquely defined in the type T, space. In the general case we use 
the local, linear nonholonomic Coordinate transformations to obtain globally the result that 
the canonical forms of the matrices M and N have the following form for the type T,: 

Here CQ, ap and !-L BP are invariants of the Weyl tensor end we either have al+a, and 
BI# Bs I or olf- a&, &.+ pJ2,~:,+ - ~~12, PO+ h/2. Therefore the diagonal terms in the mat- 
rices M and Ndiffer from each other, the fact related to the absence of multiple rootsin the 
corresponding secular equation. The uniqueness of the canonical matrix K and the correspond- 
ing basis vectors 3,=n and their envelopes implies, in general, the uniqueness of the as- 
sociated reference system. Degenerate types result from the multiple roots, for which the 
canonical forms of the matrices M and N retain, in the case of N,D and 0 a special form 

uniquely defined for each type, while the corresponding Petrov tetrads and the vector u = 3s 
are not determined uniquely. 

Every system of tetr%ds defined by means of the vector fields u = 3, as canonical for 
the matrices of the Weyl tensor components in the given Riemannian space, has a corresponding 
family of world lines which can be regarded as the families of lines associated with the 

Riemannian space which has the corresponding, uniquely introduced canonical matrix of the Weyl 

tensor components. According to Petrov, the canonical tetrads in the types T,, Tz and T,are 
determined uniquely at every pointM of the Riemannian space, therefore in these cases the 

associated reference system obtained is unique and fully defined by the WeYl tensor. In the 

types N, D and 0 we find that for the fixed canonical forms of the matrix K the correspond- 
ing orthonormed tetrads 3$ and the corresponding vectors 3& = u are not, accordingtoPetrov, 
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defined uniquely. In the type 0 the tetrads are arbitrary. In the case of the types Nand D 
we obtain, for the possible vectors u, at every pointikfof the Riemannian space, families 

which depend, respectively, on two or on a single scalar parameter. A complete three-dimen- 

sional cone of directions can be constructed at every point in question of the Riemannian 

space M . Out of these directions we can, in general, extract six directions determined by 

the isotropic vectors in terms of the basis vectors taken in the Petrov tetrads Q&= 3( f 

3,(cc = 1, 2, 3), and hence construct the corresponding six families of the isotropic worldlines 
which can also be regarded as lines directed towards the future and "accompanying", in the 
universe, the given Reimannian space. These lines can however turn into each other when the 

basis is transformed. 
Apart from the isotropic lines accompaning with the space, we can introduce, by defini- 

tion, the principal isotropic directions at every point of the space, tangent to the isotropic 
vectors the components of which satisfy the equations(*) 

(1.1) 

in which the vectors Q= @3i satisfying the conditions of isotropy gp,Qpp = 0 are deter- 
mined with the accuracy of up to the constant multiplier. In general, we have four different 
directions in the nondegenerate cases of type T 1, therefore we obtain four isotropic associat- 
ed lines inthe formof envelopes of the principal isotropic vectors Q. These lines can also 
pass into each other during the corresponding coordinate transformations. The directions Q& 
are on the whole, different from those of the principal isotropic vectorsQ. 

If some of the solutions of (1.1) merge, then the Riemannian space becomes algebraically 
degenerate. If only two solutions merge into one, then the R space will be of type T, by de- 
finition. If three solutions for Q in (1.1) merge at every point, and therefore three prin- 
cipal isotropic directions merge, then we have a type T, space. Merger of all four solutions 
yields a type N space. If the principal directions merge in pairs, separately but atthe same 
time, we have a type D space, and finally, a type 0 Riemannian space obtain when all compon- 
ents of the Weyl tensor are zero. In all the types described above the canonical forms of 
the matrices K are known /4/. When the canonical form of the matrix K is kept invariant,then 
the transformations taking the system of orthonormed bases 3i into the system of orthonormed 
bases Bi, can only represent a Lorentz transformation of the form 

B1 = L*$ (1.2) 

Direct substitution can be used to show that in the types T1, T, and T, the above trans- 
formation can only be an identity. Consequently the tetrads 3* and the vector field u = 34 
are determined in these types uniquely and the associated reference system, i.e. the systemof 
the world lines enveloping the vectors u describe, together with the Weyl tensor invariants, 
a Riemannian space and all its properties at R,, = 0, including the dynamic propertiesofthe 
R spaces for the case of vacuum. 

The Weyl tensor has only four independent algebraic invariants. We can take as these 
invariants, four functions appearing in the canonical matrices, in terms of which all the Weyl 
tensor components written in canonical matrices are expressed. From the known types of the 
matrices K for the Weyl tensor it follows that in the types T,,N, and Othe invariant com- 
ponents of the Weyl tensor are either known constants, which can be assumed in accordance with 
the canonical forms of the matrices M and Nequal to unity, or they are zero. For #is reason 
we can treat any functions of the Weyl tensor invariants in the present cases as constants, 
although the values of these constants may depend on the type and form of the functions of 
the invariants used. 

In the types N,D, and 0 the tetrads 3t are, according to Petrov, noninvariant under the 
condition of invariant determination of the corresponding canonical type of the matrices 
and hence of M and N. 

K, 
As we know, in thesecasesgroups of transformations of the orthonormed 

bases 3i, Lo,LK and LD exist, which leave invariant the matrices M and N defined according to 
Petrov. In particular, for the type 0 such a group of transformations coincides with the com- 
plete group of Lorentz transformations corresponding to the passage between two arbitrary, 
fixed time-like directions of the vector u = 34. (In this case we find that when 
the space becomes a Minkowski space). 

z?,j = 0 

LD has one, 
Therefore LO has three real parameters, LN has two and 

the parameters changing the associated reference systems. 
In the cases listed above the vector field u - 3, in the corresponding tetrads is not 

determined uniquely, consequently the associated reference systems cannot be determineduniqu- 
ely by the canonical form of the matrix Konly. We shall however show that in these cases we 

*) A natural route for introducing the principal isotropic directions and equations (1.1) can 
be found in papers /5-ll/. 
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find that the problem belongs to the inertial reference systems just as in the special theory 
of relativity where the p-t played by the reference systems geometrically associated with 
the Minkowski space, in determined nonuniquely. In the case 0 the family of the associated 
world lines represents a system of parallel, straight time-like lines. 

The nonuniqueness encountered in the types 0, IV and D is essentially connected withthe 
Presence in these Spaces Of the Sets of equivalent global reference systems representing the 
straightforward analogs of the inertial reference systems in the special theory of relativity. 
We have the following relationship for the canonical matrices in the case when the principal 
isotropic directions Q merge, and the vectors 31,3~,3~ in any tetrad corresponding to the 
canonical matrix K, are designated in prescribed manner: 

QI=Q:+=%+% (i-3) 

For this reason the formulas 3,(1,0,0,0),3, (O,O.O, 1) and Q1 (1, 0, 0, 1) for the components 3,,3, 
and Q, taken in the Petrov tetrads, hold for any tetrad 3* obtained from any canonical tetrad 
by means of an admissible Lorentz transformation. In the case D where we have two merged 
principal isotropic directions Q, and Qz which single out a plane invariant element n, cor- 
responding to the basis vectors 3*, 3, in the canonical tetrads, we can assume that in addi- 
tion to (1.3) for Q, the following relation holds for Q, 

Qz=Q:_=3a-31 (1.4) 

The formulas (1.3) and (1.4) follows from the properties of solutions of (1.1) written for 
the canonical matrices in the degenerate types D /4/. 

Let us consider the problem of constructing the associate reference systems for the de- 
generate types 0, N and D of the pseudo-Riemannian spaces in which the unit vector 34 cor- 
responding to the Petrov canonical orthonormed tetrads is not defined uniquely. In this 
connection we recall the actual canonical forms of the matrices Kand the corresponding can- 
onical tetrads in the types 0,N and D. In the type 0 we have Wijr, = 0 in all coordinate 
systems, and therefore, generally speaking, in all tetrads. This also implies that all in- 
variants of the Weyl tensor can be assumed, in the type 0, to be equal to zero. As we know, 
in vacuum where the relation Rii = 0 also holds, the corresponding pseudo-Riemannian space 
degenerates to a Minkowski space. 

Using the arbitrariness of the canonical tetrads in the Minkowski space, we ean consider, 
in this space, any reference systems depending on the choice of the vector fields u. The 
determination of the latter requires, generally speaking, the introduction of functions ex- 
pressing their laws of distribution, depending essentially not only on the geometrical nature 
of the Minkowski space. Clearly, vector fields u of such nature, connected not only with the 
spatial characteristics, can be investigated in any type of the Riemannian space and with 
various corresponding Weyl tensors /U-14/. However, the theory developed here considers the 

vector fields for u, which can be determined at every point of the space algebraically, only 
in terms of the metric tensor components gr, and Weyl tensor components W1jh.l. 

In type .Owe have Wijkl = 0 at all points of the space. We can therefore assume that 
every reference system associated with the Minkowski space is fully determined by separating 
a single arbitrary initial tetrad, since there are no reasons connected with the character of 
the Minkowski space to suggest that the tetrads at the neighboring points should vary in re- 
lation to the initial tetrad chosen. This implies that after the initial tetrad has been 

chosen, all tetrads at theneighboringpoints and , generally speaking,at all other points of 

the Minkowski space, should be the same. In this case the field of tangential unit vectors 

u can be constructed in the local, as well as the global manner, starting from any single 

given tetrad at an arbitrarily chosen point, by consecutive displacement of the vector u into 

all adjacent, infinitesimally near points. In this manner we find that the reference numbers 
associated with the Minkowski space represent arbitrary families of the time-like parallel 

straight lines. It is clear that such reference systems represent, in the special theory of 

relativity, the inertial reference systems which can be regarded as the principal character- 
istic geometrical singularities of the Minkowski space. It is also clear that the algorithm 

for separating the characteristic associated reference systems in type Oout of the nonuniqu- 

ely defined vector fields II taken from the Petrov tetrad, is obtained thanks to the absence 

of any influence from any additional geometrical parameters. 
In type N the canonical type matrices M and N in K have the following form /4/ for the 

nonuniquely defined canonical Petrov tetrad.5 at any point of the space: 



151 

From this we see that in any concrete solutions of type N all scalar invariants of the Weyl 
tensor represents the same scalar constant over all points of the space. 

Let 3i denote certain, arbitrarily chosen orthonormed vectors for the Petrov tetrad, de- 
fined at every point of the space N. Then we know f6-111 that at any point of the space 
the canonical form of the matrix K remains invariant for all solutions of type N, in the 

tetrad St, defined by the transformation 

(1.5) 

z&=31 - -+(ae+ 67(34+ 3,)- a31- 633 

%=32-t-a(3*+31), %=%-t-6(34+31) 

In the above transformation a and 6 denote any real functions of the points of the space. 
The transformations (1.5) represent the Lorentz transformations at any fixed point of the 
space, for any two parameters a and 6. 

It can be confirmed that the following invariant relations hold under the transformations 
(1.5) for the isotropic vector Q at every canonical tetrad, at every point of the space: 

Q=u+3,=3+;jj (1.6) 

The components ofthe vector Q(1,0,0,1) in the nonuniquely determined Petrov tetrads are de- 
fined uniquely by the canonical matrix K. The isotropic vector Q represents, in the type N, 
four principal isotropic directions merged together. The components of the isotropic vector 
Q can be obtained in any concrete solution of type N, at every point of the space and in 
any coordinate system, by means of algebraic operations. To obtain all admissible vector 

fields u we define, at every point of the space, in addition to the partly defined field of 
canonical tetrads 3i, another two arbitrary scalar functions a and 6 of the points of the 
space, entering the transformation formulas (1.5). 

In connection with solving the problem of determination of the reference systems associat- 
ed with the type N space, we note that every concrete type N space has, as compared with 
type 0 space, additional geometrically essential field of the known principal isotropicvectors 

Apart from this vector, there are no other significant parameters at different points 
o< the space, and in particular in the canonical matrix Kwhich remains the sameatallpoints 
and in any type N space. 

At every point of the space N the system of canonical tetrads and the set of the cor- 
responding basis vectors are characterized by a completely unique principal isotropic vector 

Q- Also, at every point of the spaceN we find, for the group of transformations (1.5) of 
canonical tetrads representing a subgroup of the Lorentz transformations, that the geometrical 
locus of the ends of the vector u forms a two-dimensional surface a. 

From the first formula of (1.5) we find that the equation of the surface s representing 
the geometrical locus of the ends of the vectors u'(ml,$,u~,~*), has the form 

m* = 1 + '12 r(2")2 + (zyl, 2’ = -va f(2)* + (;c9)81 

in any canonical tetrad with local Cartesian coordinates rr,z*,P,i. Clearly, the points on 
the surface e belong to the three-dimensional hyperplane ti = 1 -2'. In every canonical tet- 
rad the plane perpendicular to the vectors 3, and 3, contains the vector 

Let us consider any two points P and P', 
Q - 3,-t 3,. 

but infinitely close to each other, andlet Q(P) 
and Q’(P’) denote the corresponding to them merged principal isotropic vectors, with 31 and 
3,' denoting any two corresponding systems of canonical tetrads, For the infinitely close 
points P andp'we can transform all tetrads and the vector Q', parallel to themselves, from 
the point p'to the point P and describe all vectors using a single fixed Cartesian coordinate 
system of the tetrad 3, at the point P. If Q(P)= Q’(P’) for any P’, then it is clear that 
any two-dimensional sets s and s' are identical and will coincide exactly after being trans- 
lated to the point P in the system of bases 3r. In this case all vectors 3& = u depending 
on the parameters a and b in the transformation (1.5) and defining E. can be assumed, as in 
type 0, to be the same at every point of the space. However, a constraint will now apply, 
namely the requirement that the ends of these vectors must belong to the two-dimensional set 

E. Thus the vectors u defined at every point of the space in terms of two parameters a - 
const. b = const will, as in type 0, define the associated reference systems for which the fol- 
lowing obvious relation will hold: 

VjU' = 0 Il.71 
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If Q(P)#Q'(P'), then transporting the canonical tetrads from the pointp'to point p we 
obtain different tetrad families. AS we know, transforming one orthonormed tetrad into 
another orthonormed tetrad Can always be carried out with help of the Lorentr transformation, 
However, the transformation of one canonical tetrad at the point p' into another canonical 
tetrad at the point P does not, in general, represent a Lorentz transformation of the type 
(1.51, Since under the transformation (1.5) we always have Q = Q' which contradicts the in- 
itial assumption that Q (P)#Q’(P’). Therefore, although the two-dimensional surfaces E and 
E' are the same, they have different orientations. The surfaces 8 at the point P and P’ trans- 
ported from P'into Pmay have common points at which the vectors u are the s-e, but in this 
case the vectors 3,,3,,3, and 31',34,33' are different in accordance, in particular, with 
equality (1.61 when Q#=Q'. In the general case the sets E and 8' coincide for the points P 
and P' belonging to one and the same envelope of the merged principal isotropic vectors Q 
which, as we know /g/, are for type N the geodesic vectors in the RiemaMian space when 
Rij = 0. 

Next We consider the problem of constructing the associated reference system based only 
on the geometrical characteristics of the space itself, expressed as the envelopes of the 
vectors U for 
canonical tetra!ZZ'* 

We recall that the components of the vector u in the corresponding 
0,0,0,+4 and can be determined in any coordinate system usingtheknown 

nonholonomic coordinate transformation to the given canonical tetrad. Keeping the vector Q 
fixed we can introduce, in a unique manner, at every point of the type N space using the set 
of canonical tetrads defined by the transformations (1.5), a two-dimensional surface e orient- 
ated in the same manner with respect to all canonical tetrads at every point of the space. 
The orientation of the vector Q governs only the orientation of the equivalent tetrads from 
the point of the transformations (1.5) and the orientation of the surface e at the points of 
the space. 

Every individual point of the corresponding surface e has, amongst the collection of 
equivalent tetrads, a corresponding, uniquely defined tetrad and the corresponding vectors u 
and 3, satisfying the relation (1.6). Xt is clear that the individualization, ax in other 
words, separation of a Point of the surface e is equivalent to the process of separating a 
canonical tetrad and the vectors u'and 3x', and can be reduced to that of fixing theparameters 
a and 6 taken from the particular local transformation of the type (1.6). If we place all 
points of the space with the known vectorsQ in 1:l correspondencewiththepointsofthesurface 
E or with the values of the parameters a and b obtained from the local partial transforma- 
tion (1.51, we obtain the vector fields Q, U‘ and 3, connected by the relation (1.61. This 
kind of individualization depends on the initial tetrad entering the formulas (1.5). It is 
however remarkable that the intrinsic properties of the surface e do not dependonthechoice 
of u in the initial tetrad. The orientation of the surface e is different at differentpoints 
of the space, and is completely defined, mainly by the isotropic vector Q- 

We cm use as the parameters fixing the individual points on differently orientated sur- 
faces s at various points of the space, other parameters connected functionally in 1:l cor- 
respondence with aand d. It is essential that the general equation of the surface e is the 
same at every point of the space, in any canonical tetrad, and a fixed point on the surface 
e has the corresponding, well defined vectors Q'and u' and a canonical tetrad. It should how- 

ever be remembered that when Q=+Q', the systems of tetrads are different at differentpoints 
P and P'of the space, and so are the surfaces E, 8’. The unit vectors u andu' have differ- 
ent orientations. we have shown above that the points of the surface (! can always be individ- 
ualized in the initial tetrad at the given point using the values of the parameters a and b 
appearing in the transformation (1.5). When Q+Q', the same individual points on e and 

E' will have, at different points of the space, the corresponding different tetrada and dif- 

ferent vectors u'. 
To construct different associated reference systems in the type N spaces, it is natural 

and sufficient to assume that all points of the space have a single corresponding point on 

the surface s, with different orientation at different points of the space. The canonical 

tetrads and vectors u'witb fixed values of the parameters a and b corresponding tothe individ- 

ualized point on the surface e, for world lines and canonical tetrads at all points of the 

space. me Lorentz transformation for the tetrads lying infinitely near each other is deter- 
mined by the matrices YiJ&’ where yrJr = --YJig are the Ricci symbols and G%?? are the infinit- 

esimal displacement vector components 

In accordance with this we obtain a definite reference System in tie whole space- Further, 

if we accept the natural assumption that all points of the surface E are equivalent, then 

every pair of parameters a and b, or in other words every individual point e, will have its 

associated reference system. Thus we find that in type N a continuous Collection of the 

associated reference systems can be used, every system determined by the valuesoftheindivid- 

ual parameters ofthepoints 8, and in particular by the values of the parameters e and b. 
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For a given, specified type N space we find, that according to (1.6) every scalar term in the 

equation 

Viui + div.3, = Vi@ (1.8) 

has a single identical value for all associated reference systems. In particular, thereexists 

an invariant V,U', which can depend on the points of the space and represents acharacteristics 
of the type N space in question. The characteristics, as a function of the points of the 
space, can be different in the different, particular, type N spaces. It is clear that if in 
some region the directions of the vectors u and u' are the same at all points P and P' lying 
close to each other, but the canonical tetrads can be different, then the following relations 
hold: 

Viui =O, div,3, =V,Q' 

In different typeN spaces the relation connecting the scalars VJ and div,3, depends on 
the distribution of the isotropic vectors Q. 

The method of constructing the associated reference systems in the Riemannian space re- 
presents, in type N, a straightforward natural generalization of the method used earlier to 
introduce the associated reference systems in the other types. Indeed, e.g. in type T1 the 
canonical tetrad and vector u are determined uniquely, therefore the associated reference 
system is also unique. In typeN the vector u is not determined uniquely by the form of the 
canonical matrix K, but its uniqueness is attained by fixing the point on the surface E or, 

which amounts to the same thing, fixing directly the vector u' obtained from the groupoftrans- 
formations (1.5). NOW, in the case of Nwe can construct in this manner many associated 
systems, remembering to use different points of the surface a. The requirement thatthe fixed 
points lie on the surface E, or in other words, that the ends of the vectors u' lie on the 
surface E, presents a certain restriction absent from the type 0. 

We can express the invariant 0,~~ in type N, just as in type T,, in terms of the 
characteristics of the associated reference system. Indeed, denoting by 3,' and 3i the ortho- 
normed bases for the associated reference system in question at the points p'and P lying in- 
finitely close to each other for the canonical tetrads, we find that the corresponding Lorentz 
transformation has the form 

3i '= (&j + yj***J) 3, 

where P1 denote the Cartesian coordinates of the point P' in the tetrad for P, and Yin are 
the Ricci symbols. 

We can write for the vector u' in the tetrad for the point 

u' = 34' = (&j + yj.41#)3, 
and this yields 

VIElt = $.u 

P /2/ 

(1.9) 

From this it follows that the quantity Y'&i is a scalar with a single and the same value at 
every fixed point, and in all asociated reference systems introduced above. 

Let us now turn to type D. According to Petrov, in type D the aanonical form of the 
matrices M and N in the matrix K, for the nonuniquely determined canonical tetrads, is as 
follows: 

(1.10) 

The invariants a and fl in the actual solutions may depend on the points of 
principal, isotropic pairwise merged directions Q1 and Q2 define the plane 
be introduced at every point of the space, together with the definite unit 
mutually perpendicular and lying in the plane n, in a nonunique manner. 
be considered together with the corresponding unit vectors 3, and 3, as an 
of the Petrov basis vectors in which the matrix K mentioned above and the 
ricesM and N (1.10) are invariant. 

the space. The 
n. A plane n can 
vectors 3, and 3, 
The vectors can 

orthononoed systems 
corresponding mat- 

The nonuniqueness of the canonical Petrov tetrads is connected with the presence of a 
group of Lorentz transformations depending on a single parameter vlc, transforming the tetrad 
3i into the tetrads 3, and retaining the canonical matrix of the Weyl tensor components in- 
variant in the type D. As we know /9/, the transformations have the following form under the 
corresponding numbering of the orthonormed basis vectors 3* and 5i (here c denotes speed of 
light): 
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Every such Lorents transformation corresponds in a rectilinear translational motion along the 
direction of aI with thsee-dimensional velocity v of the translational motion in the plane n 
of the system Z&,3, relative to the system aI, C$. The formulas (1.U.) provide the transform- 
ation from the canonical orthonormed unit bases 
bases 5,. S,,S,, 5,. 

3~,3~,3,, 3* to the canonical orthonormedunit 

Let us now introduce the isotropic vectors QI and Q2 directed along the principal,merqed 
isotropic dixections and defined by the formulas 

91 =u+31, Qa==u--3i (1.12) 

The vectors Q1 and Q1 axe situated in the plane -2, just as the vectors u and 3,. The plane 
x r the directions of the vectors Q1 and Qp and a, 8 in the matrix K are ail determined un- 

iquely by the components of the metric tensor f and corxes_pondingfy by the components of the 
Weyl tensor. In case of different canonical tetrads, the vectors Qi and Q* are defined by 
virtue of the transformations (1.11) nonuniquely, since from the formulas 11.11) and (1.12) 
follow 

where the scalar parameter h is, according to (1.11) I equivalent to the parameter Vie and can 
assume various values ranging from zero to + m. 

The scalar equation Q,Qp= Q1& = 2 follows from the formulas (1.12) and is satisfied 
identically at every point of the space. When V/C = 0 , and hence when h = 1 , we have from 
(1.111, 3, = 3, and 3,=ZS3. Thus the transformation formulas (1.11) are connected with the 
initial vectors 3* and3, where h=i. 

Let us now consider the geometrical locus of the ends of the vectors u =3* for the 
Petrov tetrads at a fixed point of the space. Since this system of tetrads, and hence of the 
corresponding vectors 6 depends on a single parameter only, it follows that the geometrical 
locus which represents in type D a simplified example of the set E (two-dimensional in type 

N)' represents here a curve situatedqin the plane n. It is clear that the plane x is dif- 
ferent at different points of the space 0, but the curve remains the same in every knownplane 
s. 

It is easy to establish that- the set s represents, for type P), a hyperbola in plane n 
with known asymptotes corresponding to two merged isotropic directions. The hyperbola is situ- 
ated so that the vector u" can be represented by any vector pointing towards the future between 
the isotropic directions determined by the vectors QI and Qp. At every point of the type D 
space the hyperbola, as well as the principal merged isotropic directions and the plane XC con- 
taining them, can be shown directly, provided that the components of the metric tensor intype 
D are known in some arbitrarily chosen coordinate system. Using this coordinate system at 
an arbitrarily selected point P, we can define arbitrarily a time-like unit vector ug lying 
in the plane n, pointing towards the future and situated between the merged isotropic direc- 

tions Qz and Qz. Raving conditionally fixed the vector u,, corresponding to the values uic = 

0 or h=l, we can determine the individualization of the points lying on the hyperbola by 
the values of h, or by the corresponding values of U/C in the Lorentz transformations (1.11) 
preserving the canonical form of the matrix K. We use the vector u0 specified above and the 
corresponding canonical tetrad T to construct analogous tetrads T'ancl vectors ui at every 
pointp'of the given space L) and thus obtain the corresponding reference system associatedwith 
this space, We can carry out such construction in the small in more detail, as follows. We 
postulate the planes P and SC' and the corresponding hyperbola at two infinitely close points 

p and P’ . In addition to the unit vector u,, in the plane IL and canonical tetrad T with the 

basis vectors 3i (34 = Ug) t we take at the point P’ of the plane JE' an arbitrary unit vector 

UC?* and the corresponding canonical tetrad T* with basis vectors 3i*(3,* = ug* ). We transfer 

the tetrad T* and its basis vectors 3i * from the point p' to the infinitely near point P and 
denote by J& the elements of the matrices L of the infinitely SmaU. LOrent t~~WfO~S~iO~F 

the elements connecting the vectors 3i* af tetrad T* with the vectors 3z of tetrad T. He have 
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where the matrix nrk determines a three-dimensional turn, and the transformation matrix Ei* 
determines a translational motion of the type (1.11). As we know, the matrix L = 11 Lik (1 can 
be written for the infinitely small Lorentz transformation in the form 

in which 

(1.14) 

where the vector PP' = dr = 12'3, = dxk3h*, Vk.il are Ricci symbols, and Ykil = - Yikl. 

The matrix II determines an infinitely small, purely spatial turn which superimposes the 
planes n and SC' and the corresponding hyperbolas, and the matrix E determines the relative 
translational motion of the bases 3,,3,=n0 and 3,*,3d* =u* along the hyperbola and depends 
only on the choice of u. and u*. 

Let us denote by (I JY~*~II = E* the matrix of the infinitely small Lorents transformation 
in the plane n', inverse to the transformation E:Ej*'EiS = &j;. If we now write 

3j' = Ej*isi = E*iEi*n,k3k = nrk3, (1.15) 

then, irrespective of the choice of the initial vector u* and the bases 3j* in the plane n; 
we can regard the canonical tetrad 3i' and the vector 3&‘ = u’ taken at the point P’ as cor- 
responding to the tetrad T and vector u0 at the point P. The tetrads T and T’ are connect- 
ed by an infinitely small turn under which the planes x and 31' superimpose. The turns depend 
only on the vector clr and are independent of the choice of the initial vector u0 and con- 
sequently, of the values of the parameters v/c or h individualizing the points on the hyper- 
bolas in the planes n and n'. By virtue of (1.14) and (1.15) we find that the relation u*= 

uti holds for the infinitely close points P and P' in the corresponding canonical tetrads. 
If follows therefore that in a small region near the point Pthe components u' taken in the 
neighboring canonical tetrads are the same to within the terms of higher order of smallness, 
and 

hi/ax" = 0, div,u = V,u' = 0 (1.16) 

It is clear that the relations (1.16) hold at any point P of the space D and for every assoc- 
iated reference system constructed from any point p with any initial unit vector ug of pre- 
scribed.type. 

In the tetrads differing from each other at the points P and P’ we have, in the small, 
according to (1.151, &"lds = Q shere cl.~ is an element in the metric form, with the accuracy 
of up to and including the first order infinitesimals in dx'. However, the field of unit 
vectors u constructed step by step using the proposed method, with help of the canonical tet- 
rads and with the nonlinear terms taken into account, in a finite region of the space D, is 
not obtained byparalleltranslationof the initial vector u0 selected at the some point P. In 
the small we have the same ui in the neighboring tetrads, therefore du'lds = 0. In the general 
case however, we find that at different points of one and the same world line we have, for 
certain associated reference system, the acceleration du/&#O. This can easily be establish- 
ed when the components of the metric tensor of the given solution of type Dare known. In 
this connection, it is evident that the corresponding world lines of the associated systems 
on which the accelerations are not zero, are not geodesic. 

2. Let also inspect certain general conclusions and various representationsofthe metric 
form connected in any manner with the given field of four-dimensional velocities u and the 
associated coordinate systems. In the global form the metric form for the nonisotropicvectors 
can be written, in the general case, in the form 

o!.s’= g&$)(dq4)* +- 2ga,(qi)dqadq’ -!- g,&j%+ (2.1) 

or 

ds2= cZdt2 -+ 2g$dEadt I g&d&@ (2.2) 
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Here '1'~ 9" and t, E", a = 1,2,3 denote the Lagrangian coordinates connected by a transforma- 
tion of the form 

t = f (la, n4), fe = as (q', q', q3); a, p = 1, 2, 3 (2.3) 

It is evident that the formulas (2.1) and (2.2) correspond to the same family of world lines, 
determined by the same given unit vector field u. It is easy to see that when t" and '1" are 
constant, then the differential dt at the global time variable is equal to the increment in 
the characteristic time along every world line. The choice of the functions f(qa, q’) &SO 
determines the start of counting the characteristic time on every world line, and the func- 
tions @@($, $, $) can be arbitrary. In the general case the components gij, 4 j = 1>3,3,4. 
depend on n1,na,r,3 and n4 and the components g$, g& on all E'_ The family of the assoc- 
iated world coordinate lines Em = ccnst or qa = 
ence of the coordinates ni on 

const can be obtained, by virtue of the depend- 
t, from (2.1) and (2.2), using the formula (2.3). 

We shall call the motion of a perfect medium with velocity u stationary, if all compon- 
ents of the metric tensor gij depend, in some coordinate system ni, only on $, q* and 'I3 
and hence not on the time coordinate n4. The corresponding form of the metric (2.1) and the 
corresponding motion may suggest the presence of stationarity, but in the form of the metric 
given by (2.2) for the same motion the components g& and & may depend on 5" and t. 

In the general case it is impossible to make all components g& vanish when using the 
transformations (2.3) which preserve the reference system. Indeed, the four-dimensional vel- 
ocity u and acceleration vectors a = ddds represent the invariant geometrical character- 
istics of the given associated world lines. On the other hand, in a coordinate system cor- 
responding to the form (2.2) of the metric and in a local inertial characteristic coordinate. 
system with the orthonormed basis vectors zia, 54, we have at any point M 

ii, = tikg& = g&, since 
b=-@j% + @ 

where 

$=I, $=O 

and by virtue of the inertial character of the tetrad 3; we obtain 

(2.4) 

(2.5) 

Therefore, if the world lines are non-geodesic, then the acceleration a#0 and hence, in 
accordance with (2.5), g&+0 is mandatory in the associated reference system, If the com- 
ponents g& in (2.2) do not depend on the global time t, then the world lines are geodesic. 
If gij(qa) depends only on n a then we have stationarity, but the world lines qa = const are, 
generally speaking, not geodesic. 

If the world lines are geodesic, then dgAJdt=O but in this case we can also make the 
components g& vanish by means of a transformation of the type (2.3), provided that the 
following condition of integrability holds: 

(2.6) 

or, in other words, provided that the corresponding velocity field with components ua is ir- 
rotational. Arranging the velocity field u, we can determine and compute at every point of 

the space, various mechanical characteristics of the flux of the corresponding perfectmedium 
corresponding to the velocity field u at every point of the space. 

Next we shall give a kinematic interpretation of the invariant Viu’. In the locally 

inertial tetrad introduced above and corresponding to the formula (2.4), we have 

&'=d#- dz"-d#- dx'=, dti=c dt (2.7) 

Let us now introudce the three-dimensional velocity V of the points V = V"& in the three- 

dimensional space using the local characteristic coordinate system introduced at the point M. 
By definition, we have at &f,na= 0 and va = 0. In the adjacent, infinietely close pointsM 

we have, generally speaking, m,#O and v,# 0. We recall the known formulas 

(2.8) 
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where C is the speed of light. Using (2.8) we obtain from (2.7) at the point M 

(2.9) 

since we can assume that dV,ds = dV,= dVpdt where ds = cdt and dt is the characteristic 
time increment on the world line passing through M. Here dV, denotes an infinitesimal ele- 

ment of three-dimensional volume orthogonal to the world line at the point M, while dVg* is 
the same deformed "liquid volume" on the Same world line, displaced over the characteristic 

time dt. In general, we can use for dV, a formula of the type 

(2.101 

where a known determinant appears under the square root sign. A corresponding formula holds 

for dVs’. 
If the motion with velocities u iS steadyI then all gij are independent of '1" and 

dli,'= dV,. Consequently, if the motion of the perfect medium along the world line iS stable, 

then from (2.9) we obtain 

ViU' = 0 (2.11) 

However, in this case, just as in the general case, after transforming (2.1) to (2.2) we find 

that the components g4$ and g& will depend not only on Em, but also on E' = tr and for 
this reason we shall have in the stable motions 

u*kVk^u-ifO, du/&=a+O 

Equation (2.11) holds for the stable motions, but the world lines are, in general, no longer 
geodesic. Clearly, the relation Viui= 0 holds for the stable motion in any Petrov type 
spaces, for any associate reference systems at every point of the space. 

3. All possible type D solutions in vacuum are known for the metric tensor components &?ij 

and have been published in /15/. The general synrmetry properties of the type D space in 
vacuum imply that a coordinate system in which the components gtj depend on two coordinates 

only, can always be found, If grj depend only on ti and x2, then every associated coordin- 
ate system and the velocity field u corresponding to this reference system, will be stable. 
This implies that to determine the stable velocity field u in type Dit is sufficient to re- 
duce, with help of the symmetry properties, the metric (2.1) to the form in which the compon- 
ents gij are independent of x'. 

Above we constructed a series of the associated reference systems from the type D spaces, 
depending on a single parameter. It is clear that the relation V& = 0 holds for all world 
lines in these systems in any coordinates. This implies that in type D solutions such as 
the Schwartzchild and Kerry solutions outside the gravitational sphere where the motion is 
steady state, we have Viu"=O in the associated reference system constructed. In the types 
T,, T,, T, the vector field u and the associated reference systems are determined uniquely /3, 
4,16/, while in the types D,N and 0 they are not, but in all cases the quantity V,u' is 
determined uniquely at every point of the space. The formula (2.9) provides a simple geo- 
metrical interpretation for the variation in a substantial three-dimensional volume from the 
point of view of a flux of individualized points moving with four-dimensional velosity u . 
This is found to be an invariant feature of the Riemannian space , and a geometrically invari- 
ant property of the gravitational fields in vacuum in the general theory of relativity. The 
uniqueness of the determination of 0,~' implies the uniqueness of variation in 
along the associated world lines introduced above. 

dV8’- dV, 

All previous discussions concerned the intrinsic geometrical propertiesoftheRiemannian 
space connected with the Weyl tensor. The associated reference systems introduced are deter- 
mined using a Weyl tensor of fourth rank, possessing the known syrmnetry properties andknown 
types of canonical matrices in various degenerate cases. Thus we have developed above a 
purely mathematical geometrical theory for a four-dimensional, pseudo-Riemannian Space, and 
introduced invariant reference systems determined by the Weyl tensor. The results obtained 
above have inherent mathematical interest and do not depend on any assumptions or postulates 
of a physical nature. However, the reference systems obtained can be regarded as a general- 
ization of the inertial reference systems for the Minkowski space , and their characteristic 
features can be used as a basis for the physical assumptions concerning the determination of 
the energy and energy-impulse tensor of the gravitational fields considered in the Riemannian 
space in the case when the Ricci tensor is zero, i.e. when Rtj=O. 
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4. In order to arrive at conclusions of physical nature it is expedient to begin with 
the basic integral variational equation representing, for an infinitesival element of space 
volume, medium and the corresponding fields, a direct consequence of the variational formula- 
tion in the small of the first and second law of thermodynamics /17- 22/ 

The LagraJlgian il represents a scalar function which can be regarded as the total specific 
energy Of the system taken with a minus sign, then term SW* is governed by the presence of 
irreversible effects and external interactions, and the virtual functional 6W obtained from 
(4.1) represents a surface integral taken over the boundary surface 2 enclosing an arbitrary 
region of volume V, in the course of integrating the continuous characteristic functions of 
the physical phenomena. 

We find that in the problems of determining the energy and energy-impusle tensor of the 
gravitational field, insufficient attention is usually given in the general theory of relativ- 
ity to the following aspects. 

1) to the physical meaning itself of the variational equation (4.1) which is used, as 
a rule, in the postulated formulations of particular type: 

2) to the analysis of possible expressions for the density of the Lagrangian when the 
Euler equations are fixed; 

3) to the relation connecting the variational equation with the energy equation for the 
infinitesimal individualized objects and to the problems of individualization of the elements 
belonging to the system in question generally; 

4) to the physical meaning of the energy-impulse tensor as a physical characteristics ap- 
pearing in the equation of energy for the individualized infinitesimal volumes; 

5) to the meaning of the divergent term in the expression for the Lagrangian not affect- 
ing the Euler equation, but affecting the expression for the energy-impusle tensor. 

As we know, the Euler equations derived from (4.1) remain Unchanged if an additive term 
of the form -Vv,Qi is included in A, or in other words, if Ais replaced by 

h' = A - Vi@ (4.2) 

where @(i = I,& 3,4) are certain functions of the coordinates for which the formally and 
mathematically constructed expression ViQi may, in general, not be a scalar. The sufficient 
condition for it to be a scalar is, that Qi represent the components of some vector Q = Q'31. 
If V##O,then in physical terms it means that additional energy density can be introduced 
to the system in question. In the general theory of relativity this can be introduced in the 
form of a fraction corresponding to the energy field density and representing a physical 
characteristics of the four-dimensional Riemannian space modelling the physical space in nat- 
ure. The fundamental physical concept of the energy related to the covariance of thephysical 
laws, demandsthat the quantities A and V,Qi must be four-dimensional scalars. 

It is improtant that the scalar density of the fraction ViQi of energy should be re- 
presentable by its geometrical properties, and it can be used in various applications of the 
general theory of relativity, on the whole independently of A determining the Euler equations 
and containing the energy of matter and electromagentic field, and other terms, the applica- 
tions governed by the geometry of the Riemannian space and the properties which become zero 
in vacuum. Thus e.g. in the classical general theory of relativity the following formula for 
ii is often used: 

where R denotes the total curvature of the four-dimensional Riemannian space, li,is the speci- 
fic energy of matter referred to the four-dimensional volume, and x is the gravitational con- 

stant. BY virtue of the Euler equation we find that in vacuum, i.e. when u,=O 9 R = 0 and 

il. = 0. Since the equation (4.1) represents, at bW* #O , a variational formulation of the 
first law of thermodynamics in which, as we already said, A is specific local energy, the 
equality A = 0 when 6W+ = 0, contradicts the fundamental physical proposition that the 

gravitational fields have, and can transmit energy by gravitational waves. Addition of an 

invariantly defined term of the form --Vi@ to A in (4.1) restores in natural manner the 

physical sense of the first law of thermodynamics as applied to a gravitational field in vac- 

UUlll. Its presence determines the additional energy _VVl@dV, and governs the appearance Of 
the extra term 6Wn,carrying an additional terms in the original expression for the energy- 
impusle tensor given in terms of A and 6W* in the basic equation (4.1). The basic Euler 

equations remain in this case completely unchanged. 
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The presence of an additional term 

s V,R’dV, 

V. 

in the first integral in (4.1) does not affect the Euler equations, since the integral can 
be transformed into a surface integral over Z and all variations on 2 can be assumed, when 
deriving the Euler equations, to be equal to zero. The vector O= ai3i can in general depend 
on a number of additional intrinsic parameters affecting the energy flux through Z. The 

corresponding intrinsic parameters can be used in the physical theories in which certain com- 
plex properties are assigned to the vacuum. Using the equation (4.1), we can write 

From this we find that, provided that aidepends on the Lagrangian coordinates E" only,Shl'== 
O=dI;z'f &$VjQj and the following formula holds: 

In this case the determination of swn is reduced to determination of Pj~, i.e. the com- 
ponents of a tensor, provided that Vi@ is a scalar. After carrying out the variations and 
corresponding transformations we obtain, in the present case, in account of SWs (see /17/), 
the following expression for the added part of the energy-impulse tensor component P," : 

p,” = V$~~,“.-_vj~” (4.3) 

In the general case it is easy to confirm that 

V,Pjk = (V/V, - V,Vj)Q" P RTmj&“’ = --R~ISZ” (4.4) 

In vacuum where R,j = 0, we obtain V,P," = 0 and from the equality (4.3) follows 

PO* = V&" (a = 1, 2: 3) (4.5) 

Setting 51= Zu, where Z is a certain function of the Weyl tensor invariants, we obtain in 
the reference system associated with the vector u 

v*s-t I vj (Zu’) = $- + IV,u’, V,P = -g- -j” IV& (4.6) 

Therefore from (4.51 and 14.6) we find that in the reference system associated with thevector 

U and along the world lines, the following relations hold: 

P44 = v, (Zu') = zv*ui = IV&, aU4/dt= 0 (4.7) 

From (4.3) for Pjk and from the supplementary assumption that in the associated coordinate 
system the following relation must hold together with (4.7) for the individualized infinite- 
simal volumes contracting into a point: 

P2 =5 V@= V,lu’ z -g + zv*,i 
(4.8) 

Relations (4.7) and 14.8) agree, provided that the following equation holds along every world 
line: 

dIi& = 0 
(4.9) 

In this case we obtain 

P,*dV, =i IV&=dV, = I (dV,l - dV3) (4.10) 

since du*ldf* = 0. Thus from (4.9) it follows that 

Z (E', ES, 58) = Z (Tj', q*, na) (4.11) 

Clearly, the relation (4.11) will hold in any Lagrangian coordinate system provided that 
the metric tensor components are independent of rl*. Otherwise, (4.9) implies that we must 
take, as the invariant I, 
T,, A’ and 0. 

a constant scalar in every of the types T,,T, and Das well as in 
We have shown above that in the types 

fer from a constant. 
TII,N and 0 the invariant 1 cannot dif- 

From (4.8) and (4.9) it follows that the specific energy of the gravita- 
tional field in vacuum per unit four-dimensional volume , can be obtained from the formula 

P*~=e=V*Zu'=zV,u= (4.12) 
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where I is a certain constant not only with respect to the time coordinate, but, generally 

speaking, also to the spatial coordinates. From (4.3) and (4.12) follows a formula for the 
energy-impulse tensor ofthegravitational field in vacuum 

pjk = 1 (Vi&" - VjUh‘) = IVi (u%p - s;ukf 

The above results can also be used in the macroscopic theories concerning the energy- 
impulse tensor in the presence of matter and electromagnetic field. 

As a result of the mathematically and physically correct theory for the Riemannian space 
developed above, we introduce the associated reference systems and formulas determined by the 
space itself, for the energy-impulse tensor components in all possible examples of the grav- 
itational fields in vacuum. The results obtained make it possible to write the conditions at 
the strong discontinuities which may appear within the gravitational fields, and can be used 
in formulating the boundary conditions. 

Apart from the canonical associated systems determined only by the algebraic properties 
of the Weyl tensor components in each type, we introduce many other reference systems corres- 
ponding to other vector fields u. However, the determination of every different vector field 
u is connected either with use of the higher order derivatives in xi of the metric tensor 
components, or with the use of some parameters the nature of which cannot be determineddirect- 
ly and exclusively by the local properties of the Weyl tensor for the Riemannian space. Such 
supplementary parameters can result in substantial inequalities Viu' +0 for the associated 
reference systems in the space of type D and Minkowski space, which cannot be regarded, under 
any circumstance, and the characteristic feature of those spaces. 

In conclusion the author thanks G.A. Alekseev and A.V. Zhukov for help given in assess- 
ing the results of the theory of algebraic classification of the Weyi tensor. 
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